Summary
You can find the module to be able to run R:
module spider R
You can load the module to be able to run R:
module load GCC/11.2.0 OpenMPI/4.1.1 R/4.1.2
module load GCC/11.3.0 OpenMPI/4.1.4 R/4.2.1
module load R/4.1.1
You can run the R interpreter
R
You can run the R command to get the list of installed R packages
installed.packages()
You can run an R script from the command-line
Rscript my_script.R
You can find out if an R package is already installed
installed.packages()
library(my_package)
You can load the pre-installed R packages
module load R_packages/4.1.1
You can install an R package from CRAN
install.packages("my_package", repos = "my_repo")
You can install an R package from GitHub
devtools::install_github("developer_name/package_name")
You can manually download and install an R package
echo R_LIBS_USER="$HOME/R-packages-%V" > ~/.Renviron
UPPMAX-only: I can manually download and install an R package on Bianca
rsync -Pa R ~/
You can use renv to create, activate, use and deactivate a virtual environment
renv::init()
renv::snapshot()
renv::restore()
UPPMAX-only: I can use conda to create, activate, use and deactivate a virtual environment
conda env create -f r_env.yaml
source activate r_env
deactivate
You can submit a job to the scheduler to run an R script with regular code
sbatch my_batch_script.sh
#!/bin/bash
#SBATCH -A my_account
#SBATCH -t 00:10:00
module load R
Rscript my_script.R
You can submit a job to the scheduler to run an R script that uses parallel code
#!/bin/bash
#SBATCH -A my_account
#SBATCH -t 00:10:00
#SBATCH -N 1
#SBATCH -c 4
R -q --slave -f my_parallel_script.R
You can submit a job to the scheduler to run an R script that uses a GPU
#SBATCH --gres=gpu:x
#SBATCH -C v100
#SBATCH -p gpua100
#SBATCH --gres=gpu:1
You can find and load the R machine learning modules
module load R/4.1.1 R_packages/4.1.1
module load GCC/11.2.0 OpenMPI/4.1.1 R/4.1.2 R-bundle-Bioconductor/3.14-R-4.1.2
module load GCC/11.3.0 OpenMPI/4.1.4 R/4.2.1 R-bundle-Bioconductor/3.15-R-4.2.1
module load GCC/11.3.0 OpenMPI/4.1.4 R/4.2.1 CUDA/12.1.1
You can submit a job to the scheduler to run an R script that uses machine learning
sbatch my_ml_script.sh
You can start an interactive session
interactive -A my_project_code
salloc -A my_project_code
You can verify I am on the login node yes/no
srun hostname
You can start an interactive session with multiple cores
interactive -n 4 -A my_project_code
salloc -n 4 -A my_project_code
You can verify my interactive session uses multiple cores
srun hostname
You can start RStudio
module load R/4.1.1 RStudio/2023.12.1-402
rstudio