Summary day 4
Keypoints
- Parallel
You deploy cores and nodes via SLURM, either in interactive mode or batch
In Python, threads, distributed and MPI parallelization and DASK can be used.
- GPUs
You deploy GPU nodes via SLURM, either in interactive mode or batch
In Python the numba package is handy
Machine Learning and Deep Learning
General overview of ML/DL with Python.
General overview of installed ML/DL tools at HPCs.
- The loading of PyTorch, TensorFlow, Scikit-learn are slightly different at the clusters
UPPMAX: All tools are available from the module
python_ML_packages/3.11.8
- HPC2N:
For TensorFlow
ml GCC/12.3.0 OpenMPI/4.1.5 TensorFlow/2.15.1-CUDA-12.1.1 scikit-learn/1.4.2 Tkinter/3.11.3 matplotlib/3.7.2
For the Pytorch:
ml GCC/12.3.0 OpenMPI/4.1.5 PyTorch/2.1.2-CUDA-12.1.1 scikit-learn/1.4.2 Tkinter/3.11.3 matplotlib/3.7.2
- LUNARC:
For TensorFlow
module load GCC/11.3.0 Python/3.10.4 SciPy-bundle/2022.05 TensorFlow/2.11.0-CUDA-11.7.0 scikit-learn/1.1.2
For Pytorch
module load GCC/11.3.0 Python/3.10.4 SciPy-bundle/2022.05 PyTorch/1.12.1-CUDA-11.7.0 scikit-learn/1.1.2
NSC: For Tetralith, use virtual environment. Pytorch and TensorFlow might coming soon to the cluster!
PDC: For both TensorFlow and Pytorch :
module load PDC singularity/4.1.1-cpeGNU-23.12
Dimensionality reduction techniques: PCA, t-SNE, UMAP.