
Testing
Richèl Bilderbeek

1 The Big Picture

https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_
lecture.qmd

1.1 Breaks

Please take breaks: these are important for learning. Ideally, do something boring (1)!

1.2 Schedule

Day From To What
Wed 12:00 13:00 Lunch
Wed 13:00 13:45 Testing, is_prime_[names]
Wed 13:45 14:00 Break

1

https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_lecture.qmd
https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_lecture.qmd


Day From To What
Wed 14:00 14:45 Testing, flip_coin_[names]
Wed 14:45 15:00 Break
Wed 15:00 15:30 Testing, get_digits_[names]
Wed 15:30 16:00 Reflection

2 Testing

2.1 Problems

When do you trust your code?

. . .

When do you trust code written by others?

. . .

How do you convince other developers of a bug?

2.2 Testing

• Coding errors are extremely common (2)
• Contribute to the reproducibility crisis in science (3), e.g. (4)

Testing helps ensure the correctness of code.

2



3



4



2.3 Testing framework

• unittest, pytest, nose, etc.
• Makes it easier to write unit tests
• Takes some scaffolding
• Failed tests give a better error message

2.4 Test if something is true

No testing framework:

assert 1 + 1 == 2

Using unittest:

import unittest

class TestSmall(unittest.TestCase):
def test_is_true(self):

self.assertIsTrue(1 + 1 == 2)

� Mostly scaffolding here

2.5 Test if something is equal

No testing framework:

assert 1 + 1 == 2

Using unittest:

import unittest

class TestSmall(unittest.TestCase):
def test_is_equal(self):

self.assertEqual(1 + 1, 2)

� Hamcrest notation can give better error message.

5



2.6 Test if something raises an exception

No testing framework:

def raise_error():
raise RunType("Raise an error!")

has_raised = False
try:

raise_error()
except:

has_raised = True
assert has_raised

Using unittest:

import unittest

class TestSmall(unittest.TestCase):
def test_raises(self):

self.assertRaises(RunTimeError, raise_error)

� here it pays off.

3 Example exercise: is_prime

• Only observe, no type-along!
• Ask questions on the go! When in doubt: ask that question!
• Time: 30 minutes

3.1 Exercise: is_prime

• Function name: is_prime_[name], for example, is_prime_richel
• Output:

– Returns True if the input is prime
– Returns False if the input is not prime
– Gives an error when the input is not an integer

6



3.2 Exercise: is_prime, social

• Ping-Pong Pair programming
• Discuss how and when to switch roles first!
• Person with first name first in alphabet starts
• Try to be an exemplary duo

3.3 Exercise: is_prime, technical

• Work within scaffolding of the learners project

– Functions are in src/[package_name]/testing.py
– Tests are in tests/test_testing.py

• Work on the main branch only, share code using git push and git pull
• order the is_prime_[name] functions and tests alphabetically, e.g. is_prime_lars

comes before is_prime_richel

3.4 Live demo (30 minutes)

• Or videos: YouTube download (.ogv)

4 Exercise 1: is_prime

• Time: 30 minutes
• Do the same exercise in pairs
• There are multiple ways to do this: pick the way you feel is most natural

5 Continuous integration

5.1 Problem

How to work together well?

. . .

Encourage/enforce:

• Code must pass all tests
• High code coverage
• Uniform coding style

7

https://youtu.be/jwAyMlaODfo
https://richelbilderbeek.nl/tdd_python_is_prime_unittest_fork.ogv


• URL links are valid
• Correct spelling

5.2 Continuous Integration

Scripts that are triggered when pushing code.

Assures quality:

• Tests pass
• Code has consistent style
• Links are valid (i.e. not broken)
• Spelling is correct
• [your check here]

5.3 Continuous Integration

• CI significantly increase the number of bugs exposed (5)
• CI increases the speed at which new features are added (5)

-> Demo on learners repo

5.4 Code coverage

• Percentage of code tested
• Correlates with code quality (6) (7)
• 100% mandatory to pass a code peer-review by rOpenSci (8)

5.5 Coding style

• Following a consistent coding style improves software quality (9)

– Python: PEP8 (10)
– R: Tidyverse (11)

• May include cyclomatic complexity

– More complex code, more bugs (12) (13) (14)

8



5.6 Coding style tools

• Linter: program that tests code for style.

In Python: ruff, Sonar, pytype, Black, Codacy, Pylint, Flake8, autopep8, Pychecker, Py-
lama

5.7 Disable a ruff test

import random
i = random.randint(0, 1) # noqa: S311

You will need to defend this in a code review.

5.8 Testing indeterministic functions

Functions that do not always return the same values.

def flip_coin():
"""Produce a random boolean."""
return random.randint(0, 1) > 0

How to test these?

5.9 Randomness

A Random Number Generator (‘RNG’) produces the same random values after setting the
same RNG seed.

import random
random.seed(5)
assert flip_coin()
random.seed(2)
assert not flip_coin()

6 Exercise 2: flip_coin

• Time: 45 minutes

9



6.1 Exercise 2: flip_coin

• Function name: flip_coin_[name], for example, flip_coin_richel
• Input: none
• Output: Returns True in 50% of all cases, else returns False
• Get all CI scripts to pass

6.2 Exercise 2: flip_coin, social

• Ping-Pong Pair programming
• Discuss how and when to switch roles first!
• Person with first name first in alphabet starts
• Try to be an exemplary duo

6.3 Exercise 2: flip_coin, technical

• Work within scaffolding of the learners project

– Functions are in src/[package_name]/testing.py
– Tests are in tests/test_testing.py

• Work on the main branch only, share code using git push and git pull
• order the flip_coin_[name] functions and tests alphabetically, e.g. flip_coin_lars

comes before flip_coin_richel

7 Tests in a team

If all tests pass, we are -by definition- happy.

Programming team tresinformal

7.1 Problem

Q: When one works in a team, how to make sure my code keeps doing the same?

def get_test_dna_sequence():
"""Get a DNA sequence to be used in testing"""
return "ACGTACGT"

. . .

A: Apply the Beyoncé Rule

10

https://github.com/tresinformal


7.2 Beyoncé rule

‘If you like it, then you gotta put a test on it’

assert get_test_dna_sequence() == "ACGTACGT"

Teams should be reluctant to change tests: this will likely break other code.

Source: Wikimedia

7.3 Untestable functions

Q: How to test this function?

def print_hello():
print("Hello world")

. . .

A: Never write untestable functions

7.4 Making untestable functions testable

Q: How to make this function testable?

def print_hello():
print("Hello world")

. . .

def get_hello_world_text():
return "Hello world"

7.5 Testing graphical functions

Q: How to test this function thoroughly:

• Plot looks pretty
• Colors are correct
• Trend line is drawn

11

https://commons.wikimedia.org/wiki/Category:Beyonc%C3%A9_Knowles_in_2020#/media/File:Beyonc%C3%A9_Black_Is_King_Still.png


Figure 1: Beyoncé

12



def save_plot(filename, x_y_data):
"""Save the X-Y data as a scatter plot"""

. . .

A: usually: use a human, e.g. a code reviewer

In most cases, graphical analysis tools and/or AI are overkill. If you are stubborn: try!

8 Exercise 3: get_digits

• Time: 45 minutes

8.1 Exercise 3: get_digits

• Function name: get_digits_[name], for example, get_digits_richel
• Input: a positive number
• Output:

– Returns the number split into a list of digits, e.g. 314 become [3, 1, 4]
– Gives an error when the input is not a positive integer

• Get all CI scripts to pass

8.2 Exercise 3: get_digits, social

• Ping-Pong Pair programming
• Discuss how and when to switch roles first!
• Person with first name first in alphabet starts
• Try to be an exemplary duo

8.3 Exercise 3: get_digits, technical

• Work within scaffolding of the learners project

– Functions are in src/[package_name]/testing.py
– Tests are in tests/test_testing.py

• Work on the main branch only, share code using git push and git pull
• order the get_digits_[name] functions and tests alphabetically, e.g. get_digits_lars

comes before get_digits_richel

13



8.4 Exercise 3: solution

get_digits video:

• download (.ogv)
• YouTube

9 Recap

• Testing helps code correctness

– Use the Beyoncé Rule on precious behavior

• Testing + CI:

– Helps teaching
– Helps bug reporting

9.1 Weaknesses

• We developed only simple algorithms
• We only use simple data structures
• We ignore if code is fast [*]

This will be addressed in the next lectures :-)

• [*] vague wording on purpose

9.2 Questions?

Questions?

14

https://richelbilderbeek.nl/tdd_python_get_digits.ogv
https://youtu.be/vmRuSWhdA7c


9.3 The End

9.4 Links

• Former lecture on testing
• Hypermodern Python Cookiecutter
• Scikit-HEP project info for developers

10 Breaks

I put the break slides in the end

10.1 Break 1: 13:45-14:00

15

https://uppmax.github.io/programming_formalism-automated_testing/
https://cookiecutter-hypermodern-python.readthedocs.io/en/2022.6.3.post1/
https://scikit-hep.org/developer


10.2 Break 2: 14:45-15:00

10.3 Done: 16:00

References
1. Newport C. Deep work: Rules for focused success in a distracted world. Hachette UK;

2016.
2. Baggerly KA, Coombes KR. Deriving chemosensitivity from cell lines: Forensic bioin-

formatics and reproducible research in high-throughput biology. The Annals of Applied
Statistics. 2009;1309–34.

3. Vable AM, Diehl SF, Glymour MM. Code review as a simple trick to enhance repro-
ducibility, accelerate learning, and improve the quality of your team’s research. Amer-
ican Journal of Epidemiology. 2021;190(10):2172–7.

4. Rahman A, Farhana E. An exploratory characterization of bugs in covid-19 software
projects. arXiv preprint arXiv:200600586. 2020;

16



5. Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V. Quality and productivity outcomes
relating to continuous integration in GitHub. In: Proceedings of the 2015 10th joint
meeting on foundations of software engineering. ACM; 2015. p. 805–16.

6. Horgan JR, London S, Lyu MR. Achieving software quality with testing coverage mea-
sures. Computer. 1994;27(9):60–9.

7. Del Frate F, Garg P, Mathur AP, Pasquini A. On the correlation between code coverage
and software reliability. In: Software reliability engineering, 1995 Proceedings, sixth
international symposium on. IEEE; 1995. p. 124–32.

8. Ram K, Boettiger C, Chamberlain S, Ross N, Salmon M, Butland S. A community of
practice around peer review for long-term research software sustainability. Computing
in Science & Engineering. 2018;21(2):59–65.

9. Fang X. Using a coding standard to improve program quality. In: Quality software,
2001 Proceedings Second asia-pacific conference on. IEEE; 2001. p. 73–8.

10. Van Rossum G, Warsaw B, Coghlan N. PEP 8–style guide for Python code. Python
org. 2001;1565.

11. Wickham H. Advanced R. CRC press; 2019.

12. Abd Jader MN, Mahmood RZ. Calculating McCabe’s cyclomatic complexity metric
and its effect on the quality aspects of software. 2018;

13. Chen C. An empirical investigation of correlation between code complexity and bugs.
arXiv preprint arXiv:191201142. 2019;

14. Zimmermann T, Nagappan N, Zeller A. Predicting bugs from history. In: Software
evolution. Springer; 2008. p. 69–88.

17


	The Big Picture
	Breaks
	Schedule

	Testing
	Problems
	Testing
	Testing framework
	Test if something is true
	Test if something is equal
	Test if something raises an exception

	Example exercise: is_prime
	Exercise: is_prime
	Exercise: is_prime, social
	Exercise: is_prime, technical
	Live demo (30 minutes)

	Exercise 1: is_prime
	Continuous integration
	Problem
	Continuous Integration
	Continuous Integration
	Code coverage
	Coding style
	Coding style tools
	Disable a ruff test
	Testing indeterministic functions
	Randomness

	Exercise 2: flip_coin
	Exercise 2: flip_coin
	Exercise 2: flip_coin, social
	Exercise 2: flip_coin, technical

	Tests in a team
	Problem
	Beyoncé rule
	Untestable functions
	Making untestable functions testable
	Testing graphical functions

	Exercise 3: get_digits
	Exercise 3: get_digits
	Exercise 3: get_digits, social
	Exercise 3: get_digits, technical
	Exercise 3: solution

	Recap
	Weaknesses
	Questions?
	The End
	Links

	Breaks
	Break 1: 13:45-14:00
	Break 2: 14:45-15:00
	Done: 16:00
	References


