
Optimisation
Richèl Bilderbeek

1 The Big Picture

https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_
lecture.qmd

1.1 Breaks

Please take breaks: these are important for learning.

It can sometimes be painful/annoying when there is a break in the middle of the exercise.

Ideally, do something boring (1)!

1.2 Schedule

1

https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_lecture.qmd
https://github.com/UPPMAX/programming_formalisms/blob/main/tdd/tdd_lecture/tdd_lecture.qmd

From To What
12:00 13:00 Lunch
13:00 13:45 Discuss Retrospect, misconceptions, get a speed profile
13:45 14:00 Break
14:00 14:45 Get a speed profile, ?case study
14:45 15:00 Break
15:00 15:30 Course recap, Open discussion
15:30 16:00 Reflection

2 Retrospect

□ Discuss

3 Optimisation

https://github.com/UPPMAX/programming_formalisms/blob/main/optimisation/optimisation_
lecture/optimisation_lecture.qmd

2

https://github.com/UPPMAX/programming_formalisms/blob/main/optimisation/optimisation_lecture/optimisation_lecture.qmd
https://github.com/UPPMAX/programming_formalisms/blob/main/optimisation/optimisation_lecture/optimisation_lecture.qmd

4 Why optimization?

To improve the runtime speed (or memory use) of a program

Captain Obvious

5 Misconceptions

Q: What would be bad advice to improve the run-time speed of an algorithm?

Fill in in the shared document!

(if you dare and have time: add good advice too)

5.1 Bad advice 1

‘Use C or C++ or Rust’

. . .

3

https://allthetropes.org/wiki/File:Captainobvious02_778_7124.png

Variance within programming languages is bigger than variance between languages (adapted
fig 2, from (2))

5.2 Bad advice 2

‘No for loops’, ‘unroll for-loops’, any other micro-optimization.

. . .

Premature optimization is the root of all evil. It likely has no measurable effect.

5.3 Bad advice 2

We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our opportunities in
that critical 3%.

Donald Knuth

Source: Wikipedia

5.4 Bad advice 3

‘Always parallelize’

. . .

• Maximum gain depends on proportion spent in the parallelized part (3)
• Overhead is underestimated

4

https://upload.wikimedia.org/wikipedia/commons/4/4f/KnuthAtOpenContentAlliance.jpg

Figure 1: Donald Knuth

5

• Hard to debug

5.5 Bad advice 3

Figure 2: https://en.wikipedia.org/wiki/File:AmdahlsLaw.svg#file

5.6 Bad advice 4

‘Optimize the function where you feel the performance problem is’

Developers -also very experienced developers- are known to have a bad intuition (4)

Instead, from (5):

1. finding code program spends most time in

6

2. measure timing of that code
3. analyze the measured runtimes

5.7 Bad advice 5

‘Optimize each function’

• The 90-10 rule: 90% of all time, the program spends in 10% of the code.
• Your working hours can be spent once

6 Proper method

6.1 Problem

Q: When to optimize for speed?

. . .

A:

• C++ Core Guidelines: Per.1: Don’t optimize without reason
• C++ Core Guidelines: Per.2: Don’t optimize prematurely
• C++ Core Guidelines: Per.3: Don’t optimize something that’s not performance critical

6.2 Problem

Q: How to improve the run-time speed of an algorithm?

. . .

Make it work, make it right, make it fast.

Kent Beck

A (simplified):

1. Measure (hard to do (6))
2. Think
3. Change code
4. Measure again

7

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per2-dont-optimize-prematurely
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per3-dont-optimize-something-thats-not-performance-critical

6.3 Problem

Q: How to improve the run-time speed of an algorithm?

A (simplified):

1. Measure big-O
2. Measure speed profile
3. Think
4. Change code
5. Measure again

6.4 Measurement 1: big-O

How your (combination of) algorithms scales with more complex input.

• Counting the words in a book: O(n)
• Looking up a word in a dictionary: O(log2(n))

� Do measure big-O in release mode!

8

6.5 Your algorithm

9

6.6 Example

create_big_o_example <- function(n = seq(0, 100)) {
t_wide <- tibble::tibble(n = n)
t_wide$a <- 10 + log10(t_wide$n + 0.1)
t_wide$b <- t_wide$n
t_wide$c <- 0.001 * (t_wide$n ^ 2)
t_wide$total <- t_wide$a + t_wide$b + t_wide$c
t <- tidyr::pivot_longer(t_wide, cols = c("a", "b", "c", "total"))
colnames(t) <- c("n", "sub", "t")
t

}
t <- create_big_o_example(n = seq(0, 100))
ggplot2::ggplot(t, ggplot2::aes(x = n, y = t, color = sub)) +
ggplot2::geom_line(size = 4) +
ggplot2::theme(text = ggplot2::element_text(size = 20))

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

0

25

50

75

100

125

0 25 50 75 100
n

t

sub
a
b
c
total

� Work on B?

10

6.7 Example

t <- create_big_o_example(n = seq(0, 500))
ggplot2::ggplot(t, ggplot2::aes(x = n, y = t, color = sub)) +
ggplot2::geom_line(size = 4) +
ggplot2::theme(text = ggplot2::element_text(size = 20))

0

200

400

600

800

0 100 200 300 400 500
n

t

sub
a
b
c
total

6.8 Example

t <- create_big_o_example(n = seq(0, 2000))
ggplot2::ggplot(t, ggplot2::aes(x = n, y = t, color = sub)) +
ggplot2::geom_line(size = 4) +
ggplot2::theme(text = ggplot2::element_text(size = 20))

11

0

2000

4000

6000

0 500 1000 1500 2000
n

t
sub

a
b
c
total

� No, work on C instead

6.9 Discussion

Big-O helps to:

• find algorithm to profile
• make predictions

Agree yes/no

6.10 Exercise 1 [SKIP]

• Measure big-O complexity of https://www.pythonpool.com/check-if-number-is-prime-in-
python/

�

def isprime(num):
for n in range(

2, int(num**0.5)+1
):

12

if num%n==0:
return False

return True

�

def isprime(num):
if num> 1:

for n in range(2,num):
if (num % n) == 0:

return False
return True

else:
return False

6.11 Exercise 1 [SKIP]

• Measure big-O complexity of https://www.pythonpool.com/check-if-number-is-prime-in-
python/

�

def isprime(num):
for n in range(

2, int(num**0.5)+1
):

if num%n==0:
return False

return True

�

def Prime(no, i = 2):
if no == i:

return True
elif no % i == 0:

return False
return Prime(no, i + 1)

13

6.12 Exercise 2 [SKIP]

• Measure big-O complexity of DNA alignment at https://johnlekberg.com/blog/2020-10-
25-seq-align.html

ACGTACGTACGTACGTACGTACGT
ACGTACGTACGTCGTACGTACGT

ACGTACGTACGTACGTACGTACGT
ACGTACGTACGT-CGTACGTACGT

7 Measurement 2: Run-time speed profile

• See which code is spent most time in
• � Use an input of suitable complexity

– Note to self: next example should take at least 10 seconds!

• � Consider using CI to obtain a speed profile every push!

7.1 Run-time speed profile: code

□ Show R code in repo
□ Run R code from RStudio
□ Show Python code in repo
□ Run Python code from command line

7.2 Myth 1

def slow_tmp_swap(x, y):
tmp = x
x = y
y = tmp
return x, y

def superfast_xor_swap(x, y):
x ^= y
y ^= x
x ^= y
return x, y

14

. . .

• C++ Core Guidelines: Per.4: Don’t assume that complicated code is necessarily faster
than simple code

• C++ Core Guidelines: Per.5: Don’t assume that low-level code is necessarily faster than
high-level code

7.3 Exercise 1 [30 mins]

Create speed profile of any function you like.

□ Remind Python and R code on learner’s repo

7.4 Exercise 2 [SKIP]

Create speed profile of https://www.pythonpool.com/check-if-number-is-prime-in-python/

7.5 Exercise 3 [SKIP]

Create speed profile of DNA alignment

8 Step 3: Think

• How to achieve the same with less calculations?

– Aim to change big-O, not some micro-optimization
– For example, store earlier results in a sorted look-up table

Feynman Problem Solving Algorithm:

1. Write down the problem.
2. Think very hard.
3. Write down the answer

15

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per4-dont-assume-that-complicated-code-is-necessarily-faster-than-simple-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per4-dont-assume-that-complicated-code-is-necessarily-faster-than-simple-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per5-dont-assume-that-low-level-code-is-necessarily-faster-than-high-level-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per5-dont-assume-that-low-level-code-is-necessarily-faster-than-high-level-code

9 Step 4: Measure again

In TDD, this test would have been present already:

assert 10.0 * get_t_runtime_b() < get_t_runtime_a()

Adapt the constant to reality.

• C++ Core Guidelines: Per.6: Don’t make claims about performance without measure-
ments

9.1 Recap quote

It is far, far easier to make a correct program fast, than it is to make a fast program
correct.

Herb Sutter

Figure 3: Herb Sutter

16

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per6-dont-make-claims-about-performance-without-measurements
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per6-dont-make-claims-about-performance-without-measurements

Source Wikimedia

9.2 Case study

□ Show ProjectRampal

9.3 Discussion

• Be critical on speed optimization solutions
• Tested and clean code always comes first
• Measure correctly, at the right complexity, before and after
• Prefer changing big-O over micro-optimizations (but see first point!)

Agree yes/no?

9.4 The End

9.5 Links

• Lecture of 2022: here:
1. Newport C. Deep work: Rules for focused success in a distracted world. Hachette UK;

2016.
2. Prechelt L. An empirical comparison of c, c++, java, perl, python, rexx and tcl. IEEE

Computer. 2000;33(10):23–9.
3. Rodgers DP. Improvements in multiprocessor system design. ACM SIGARCH Com-

puter Architecture News. 1985;13(3):225–31.
4. Sutter H, Alexandrescu A. C++ coding standards: 101 rules, guidelines, and best

practices. Pearson Education; 2004.
5. Chellappa S, Franchetti F, Püschel M. How to write fast numerical code: A small

introduction. Generative and Transformational Techniques in Software Engineering II:
International Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007 Revised
Papers. 2008;196–259.

6. Bartz-Beielstein T, Doerr C, Berg D van den, Bossek J, Chandrasekaran S, Eftimov T,
et al. Benchmarking in optimization: Best practice and open issues. arXiv preprint
arXiv:200703488. 2020;

17

https://commons.wikimedia.org/wiki/Category:Herb_Sutter#/media/File:Professional_Developers_Conference_2009_Technical_Leaders_Panel_7.jpg
https://uppsala.instructure.com/courses/69215/pages/optimisation-when-and-how?module_item_id=503139

	The Big Picture
	Breaks
	Schedule

	Retrospect
	Optimisation
	Why optimization?
	Misconceptions
	Bad advice 1
	Bad advice 2
	Bad advice 2
	Bad advice 3
	Bad advice 3
	Bad advice 4
	Bad advice 5

	Proper method
	Problem
	Problem
	Problem
	Measurement 1: big-O
	Your algorithm
	Example
	Example
	Example
	Discussion
	Exercise 1 [SKIP]
	Exercise 1 [SKIP]
	Exercise 2 [SKIP]

	Measurement 2: Run-time speed profile
	Run-time speed profile: code
	Myth 1
	Exercise 1 [30 mins]
	Exercise 2 [SKIP]
	Exercise 3 [SKIP]

	Step 3: Think
	Step 4: Measure again
	Recap quote
	Case study
	Discussion
	The End
	Links

