UPFPS5ALA
UNIVERSITET

Instructions

il

Analysis and Design.

focus on Object orientation and Modular programming.

AAAAAAA

il

UPFPS5ALA
UNIVERSITET

Refactoring

The main purpose of refactoring is to
fight technical debt. It transforms a mess
into clean code and simple design

https://refactoring.guru/refactoring/sme

ls

The Postit

UNIVERSITET

method

A way to discover packages

Write your Behaviours/functional requirements on a note, group
similar behaviour in clusters, then once all your behaviours are sorted
you can draw circles on on the white board delimiting your packages.
This process can be done iteratively at any stage of the process.

Miro boards https://miro.com/app/dashboard/
(lots of design templates)

Z0O0OM has a white board function that lets you do this virtuall

Example of other online whiteboard https://ideaflip.com/

,.;:'-rir y
- - B

o6, 20
o T g 0,

L

UPPSALA
UNIVERSITET

UPFS5ALA
UNIVERSITET

Miro boards cannot currently be shown when exporting presentations.

Usecase inception

UPP5SALA
UNIVERSITET

[

A J

. ik b
il [}
L el e -

13 (Gravitationa ¢ Start snu

\alinteraction:

. I

55 ‘ParticieF '__'l i

R3 (Gravitaonal)

I

‘ “lass :BoundaryCondition

Use Case Diagram

Includes

Y

:'i|_]i_'||_|l_.l||

il
ncluaes

= N

UPPSALA
UNIVERSITET

Student Project 2

Make a usecase model for the design of
the Student project

AAAAAAA

UPFPS5ALA
UNIVERSITET

Activity Diagram

UNIVERSITET

Simulation

| User starts simulation |

s =

Il.l" 1
| User configures simulation |
"'-.__ .-'ll

| Initialize Particle Field |
5

|'Ir.- -...'L
| Configure Particles (R2) |

| _

e ",

| Configure Gravitational Interaction (R3 - Gravitational) |
I~‘ -ﬂl

| Configure Boundary Condition (R4) |
"'-.__ __.-'I

e

User steps simulation (Includes Step Simulation) |

"

| Advance Simulation (Includes Collision Detection) |
L _!.-'

- -,

|. Render Frame (Includes Renderning Frame) |

-

F ,

|. User stops simulation (Includes Exit Simulation) |

Example project activity diagram start simulation

Student Project 3

Design a sequence diagram that
illustrates the flow of one of your
usecases, ways that the software run
through a simulation

AAAAAAA

UPFPS5ALA
UNIVERSITET

Roles in Development

> Business Analyst - the translator

> Product Owner - the ultimate decision-maker
> Developer - the one who does the actual job
> Quality Assurance Engineer - the nitpicker

> User Experience Designer - the mind-reader

> User Interface Designer - the people-pleaser
> Software Architect - the wizard

> https://brainhub.eu/library/crucial-roles-in-software-development-team

UPFPS5ALA

What other roles do you see
surounding a Development Process

Waiting for responses -

The Role of Lead

in alarger scale project with many team
members some one is assigne, given or
takes the role of the Lead, the job of the
Lead is to take responsibility for and to
drive the part that they have
responisbility for.

e,
' i)
LA TR 'I“I'
e AN
: ":.".-..'\."-".-."“'

UPFPS5ALA
UNIVERSITET

il

i,

it

UPFPS5ALA
UNIVERSITET

Object

"What we mean by an object is an entity able
to sabe its state(information) and which
offers a number of operations(behaviour) to
either examine or affect the state"

-lvar Jacobson et al., Object Oriented
Software Engineering A Use Case Driven
Approach 1992(ISBN 0-201-54435-0)
https://www.gettextbooks.com/author/lvar_J
acobson

Obejct oriented development

Object orientation is primarily a design paradigm unlike
Imperative,procedural,functional and declarative
programming which focuses on how you code. One can use
any number of programming paradigms to implement the
object-oriented design.

An object is the representation of a thing or concept, that
encapsulates both data and the actions performed on it. A
key concept of an object is that it interacts with the world
through message passing of its parameters.

&5 i
gfﬁii::ﬂf-.;.

e e
£ et)
s "":':'..E'."-V

UPFPS5ALA
UNIVERSITET

*.'."-.:':d,u-_.: £
-C‘Zh".?%*".f e,
e 215554
& _.:;‘ IE"JE.TI'}\E.;I ._IlI
'\ ";ll:l:;.::;l.-c__“:%

UPFPS5ALA
UNIVERSITET

Object orienteted Programming Paradigm

"Programming Paradigms
Object-oriented programming is a technique for
programming — a paradigm for writing ““good’ pro-
grams for a set of problems. If the term “object-oriented
programming language’” means anything it must
mean a programming language that provides mechanisms
that support the object-oriented style of program-
ming well.

There is an important distinction here. A language is said
to support a style of programming if it pro-
vides facilities that makes it convenient (reasonably easy,
safe, and efficient) to use that style. A language
does not support a technique if it takes exceptional effort
or exceptional skill to write such programs; it
merely enables the technique to be used. "

- Bjarne Stroustrup
https://www.stroustrup.com/whatis.pdf

LRI
T

UPPSALA
UNIVERSITET

Hero Orc

UPFS5ALA
UNIVERSITET

UPPSALA
UNIVERSITET

Eats Swing Axe

Dragon Fights
Hero Orc

UPPSALA
UNIVERSITET

@startuml
Itheme hacker
object Dragon
object Hero
object Orc
object teeth
object fire

Dragon..>Hero:eats

Hero..>Orc:fights
Orc..>Hero:swings axe
Dragon 0..> "™ teeth
Dragon o..> fire

@enduml|

4
4
4 !

[
. s

eals i \
. \
i\
]

! fights 1 swings axe

’
’
ir
,
/ \
’ i

i
I

UPPSALA
UNIVERSITET

Character

Monster Hero

Dragon Orc

UPFPS5ALA
UNIVERSITET

Class Diagram

UNIVERSITET

(€) Character

L C) Monster 'Z;__C) Hero
IC* Cragon I:":_-C_' Orc

|
L= ﬂ. -

@ Character UPPSALA
DAL, | UNIVERSITET
L & n_instances:number
UPPSALA :
Tiprld e @ number get_n_instances()

@ Monster © HER

0 HP:number

0 name:string

© Player:string

e set_ name(name:string) < Player_ID:number
e string get_name()

© monster_type:string
© name:string

bunch_of _methods

@ orc

@ Dragon
| 0 HP:number
> HP:number < Faviorite axe:string
@ number get_HF() ® number get_HP()
e number set_HP(HP:number) o number set_ HP(HP:number)

& swing_axe()

S
(S
.._ ... mj:_. r...

UPFPS5ALA
UNIVERSITET

Escersise

Make a class diagram of your current
structure of classes and check what is
missing ad these ass a new issue.

il

UPFS5ALA
UNIVERSITET

Program Control Module: In this category, a program is controlled by an independent module uniquely designed for this
purpose only. The other programs may use the identical module with a similar name, but depending on the program, the
module's content is designed variably.

Specific Task Module: In this category, a module is produced to achieve a particular task that is prevalent in several programs.
Specific task modules are previously coded and examined, so it is easy to trust them to compose an extensive program
efficiently. However, noticing this functionality of specific task modules, we also refer to them as foundational elements

Modules carries the functionality of the program and have a set of predefined data transmission options:

no communication in with no communication out

no communication in with some communication out
some communication in with some communication out
some communication in with no communication out

UNIVERSITET

.,"*---‘-"'-.h
” ~

f-"fﬂata coupling
'

/

“~J Global Data

MODULE COUPLING

UPPSALA
D i r UNIVERSITET

https://www.visual-paradigm.com/quide/uml-unified-modeling-language/what-is-package-diagram/

UPPSALA
UNIVERSITET

Component diagrams show thedeployment
structure of yoursystem

Provided .
Interface

https://www.visual-paradigm.com/quide/uml-unified-modeling-lanqguage/what-is-component-diagram/

Escercise Redesign for modularity

Redesign your class structure to fullfill the requirements of
modularity Each module should be a logical container for

the collection of classes/submodules t
These documents should be first develo
and branches of issues then merged by t

nat It contains.
ped using issues

ne lead devloper

to the develop branch and then upon merge request from
the lead developer the lead deployment engineer takes
responsibility to merge the develop version taged for
realease. These design documents should be on github as

well.

&5 i
gfﬁii::ﬂf-.;.

e e
£ et)
s "":':'..E'."-V

UPFPS5ALA
UNIVERSITET

UPFS5ALA
UNIVERSITET

In python the common package repository is PyPl Python Package Index accessed through PiP
https://packaging.python.org/en/latest/tutorials/packaging-projects/

In java the common way to distribute your module or as it is known i java package is in a jar file.

https://docs.oracle.com/javase/tutorial/deployment/jar/

In R packaging and submitting your R code to CRAN is the best way to distribute your package
https://cran.r-project.org/ and your package needs to comply with the repository guidelines found on the webpage

To help you create a package this book https://r-pkgs.org/ will guide you through the process.

C and c++ library creation is a bit more complex as you have static and dynamic linked libraries one such tool is
https://cmake.org/cmake/help/latest/guide/tutorial/index.htmi

Fortran also has a more complex packaging and library structure both of the above have multitude of tools and ways of
compiling libraries https://fortranwiki.org/fortran/show/Build+tools.

Escersie Refactor your code

Recfactor your code in such away that

you create logical structural packages
with clearly defined interfaces as you
created in the component diagrams

AAAAAAA

il

UPFPS5ALA
UNIVERSITET

a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in software
design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or
template for how to solve a problem that can be used in many different situations. Design patterns are formalized best practices

that the programmer can use to solve common problems when designing an application or system.

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley. ISBN 978-0-201-63361-0.

Brinch Hansen, Per (1995). Studies in Computational Science: Parallel Programming Paradigms. Prentice Hall. ISBN
978-0-13-439324-7.

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter (1996). Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. John Wiley & Sons. ISBN 978-0-471-95869-7.

Beck, Kent (1997). Smalltalk Best Practice Patterns. Prentice Hall. ISBN 978-0134769042.

Schmidt, Douglas C.; Stal, Michael; Rohnert, Hans; Buschmann, Frank (2000). Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects. John Wiley & Sons. ISBN
978-0-471-60695-6.

Fowler, Martin (2002). Patterns of Enterprise Application Architecture. Addison-Wesley. ISBN 978-0-321-12742-6.
Hohpe, Gregor; Woolf, Bobby (2003). Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions. Addison-Wesley. ISBN 978-0-321-20068-6.
Freeman, Eric T.; Robson, Elisabeth; Bates, Bert; Sierra, Kathy (2004). Head First Design Patterns. O'Reilly Media.
ISBN 978-0-596-00712-6.

UNIVERSITET

UPFPS5ALA

Thank you and happy coding in the
optimisation part

