Skip to content

Summary

I can submit jobs that use a GPU.

#SBATCH -p node
#SBATCH -N 1
#SBATCH -C gpu
#SBATCH --gpus-per-node=2

I can transfer files to/from Bianca using rsync.

ssh sven@transit.uppmax.uu.se
mount_wharf sens2025560
rsync my_local_file.txt sven@transit.uppmax.uu.se:sens2025560
rsync --recursive my_folder sven@transit.uppmax.uu.se:sens2025560

I can see the CPU and memory usage of jobs

jobstats --plot 1234567

I understand how to set up jobs efficiently

  • Enough cores for memory
  • CPU limited? Consider adding more until CPU usage is around 80% on average
  • Consider adding 1 core for safety

I understand how to install software myself

  • Julia:
    • install locally with using <package-name>
    • copy ~/.julia/packages to Bianca
  • Python pip:
    • install locally with pip install
    • copy ~/.local/lib/python<version>/site-packages/ to Bianca
  • Python conda:

    module load conda
    export CONDA_ENVS_PATH=/proj/sens2025560/$USER
    conda create -c conda-forge --prefix $CONDA_ENVS_PATH/bianca-course python=3.7 numpy=1.15
    source activate bianca-course
    pip list
    python -V
    conda deactivate
    
  • R:

    • install locally with install.packages
    • copy ~/R/x86_64-pc-linux-gnu-library/4.2 to Bianca

I understand what containers are.

  • Apptainer
  • Docker
  • Singularity

I can can run the voted-for IDE on Bianca

  • Jupyter:
module load python/3.11.4
jupyter-notebook --ip 0.0.0.0 --no-browser
  • RStudio:
nteractive -A sens2025560 -n 2 -t 8:00:00
module load R/4.3.1 R_packages/4.3.1 RStudio/2023.06.2-561
rstudio
  • VSCodium:
module load VSCodium/latest
code

Possible next steps:

I want to ... Solution
do my computational work smarter Attend the 'Programming Formalisms' course
transfer files smarter Attend the NAISS 'File Transfer' course
work smarter on the command line Attend the NAISS 'Command line 101' course
find out what courses there are See the SCoRe overview of courses